Structural assessment of PITX2, FOXC1, CYP1B1, and GJA1 genes in patients with Axenfeld-Rieger syndrome with developmental glaucoma.
نویسندگان
چکیده
PURPOSE Axenfeld-Rieger (AR) is an autosomal dominant disorder with phenotypic heterogeneity characterized by anterior segment dysgenesis, facial bone defects, and redundant periumbilical skin. The PITX2 gene, on chromosome 4q25, and the FOXC1 gene, on chromosome 6p25, have been implicated in the different phenotypes of the syndrome through mutational events. Recently, the CYP1B1 gene was found to be associated with Peters' anomaly, and the gene associated with oculodentodigital dysplasia syndrome, which presents some similarities with AR, was identified (connexin 43--GJA1 gene). The purpose of this study was to evaluate PITX2, FOXC1, CYP1B1, and GJA1 gene mutations in Brazilian families with AR. METHODS Eight unrelated patients affected by AR (all eight with glaucoma and three with systemic manifestations) and their families were ophthalmologically evaluated and their blood was collected for DNA extraction purposes. The coding regions of PITX2, FOXC1, CYP1B1, and GJA1 genes were completely evaluated through direct sequencing. RESULTS The frequency of mutations in the FOXC1, GJA1, PITX2, and CYP1B1 genes in this study were 25%, 12.5%, 0% and 0%, respectively. In the FOXC1 gene, two GGC triplet insertions (GGC375ins and GGC447ins) defined as a polymorphism, and two new mutations--a deletion (718 to 719delCT) and a nonsense mutation (Trp152STOP)--were identified. One polymorphism (Ala253Val) was identified in the GJA1 gene in the same family presenting the Trp152STOP mutation in the FOXC1 gene. In this family harboring both structural alterations, two patients who carried the GJA1 (Ala253Val) and FOXC1 (Trp152STOP) mutations developed less severe glaucoma compared with family members presenting the FOXC1 (Trp152STOP) mutation alone. CONCLUSIONS Two new structural alterations in the FOXC1 gene and a polymorphism in the GJA1 gene were first described in Brazilian patients with AR and developmental glaucoma. A polymorphism in the GJA1 gene (Ala253Val), for the first time identified in association with AR, raises the possibility of its participation as a modifier gene.
منابع مشابه
Axenfeld-Rieger Syndrome Associated with Congenital Glaucoma and Cytochrome P4501B1 Gene Mutations
Developmental anomalies of the ocular anterior chamber angle may lead to an incomplete development of the structures that form the conventional aqueous outflow pathway. Thus, disorders that present with such dysfunction tend to be associated with glaucoma. Among them, Axenfeld-Rieger (ARS) malformation is a rare clinical entity with an estimated prevalence of one in every 200,000 individuals. T...
متن کاملNovel c.300_301delinsT Mutation in PITX2 in a Korean Family with Axenfeld-Rieger Syndrome
Axenfeld-Rieger syndrome (ARS) is characterized by anomalies of the anterior segment of the eye and systemic abnormalities. Mutations in the FOXC1 and PITX2 genes are underlying causes of ARS, but there has been few reports on genetically confirmed ARS in Korea. We identified a novel PITX2 mutation (c.300_301delinsT) in 2 Korean patients from a family with ARS. We expand the spectrum of PITX2 m...
متن کاملA Novel Homozygous Mutation in FOXC1 Causes Axenfeld Rieger Syndrome with Congenital Glaucoma
BACKGROUND Anterior segment dysgenesis (ASD) disorders are a group of clinically and genetically heterogeneous phenotypes in which frequently cornea, iris, and lens are affected. This study aimed to identify novel mutations in PAX6, PITX2 and FOXC1 in families with anterior segment dysgenesis disorders. METHODS We studied 14 Pakistani and one Mexican family with Axenfeld Rieger syndrome (ARS;...
متن کاملSimultaneous Bilateral Implantation of Ex-Press Glaucoma Shunt for Secondary Glaucoma Treatment Due to Axenfeld-Rieger Syndrome: A Case Report
Axenfeld-Rieger Syndrome (ARS) is a rare genetic disease affecting multiple organ systems. In the eye, it can be manifested with varying degrees of anterior segment dysgenesis and it carries a high risk of glaucoma [1]. Recent advantages in molecular genetics have identified two major genes, PITX2 and FOXC1, demonstrating a wide spectrum of mutations, which aids in the molecular diagnosis of th...
متن کاملCurrent molecular understanding of Axenfeld-Rieger syndrome.
Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant inherited disorder affecting the development of the eyes, teeth and abdomen. The syndrome is characterised by complete penetrance but variable expressivity. The ocular component of the ARS phenotype has acquired most clinical attention and has been dissected into a spectrum of developmental eye disorders, of which open-angle glaucoma r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 47 5 شماره
صفحات -
تاریخ انتشار 2006